

*Res.J.Chem.Sci.*_____ Vol. **1(4),** 98-108, July (**2011**)

Zinc Speciation in Maize and Soils

Ayodele J.T. and Mohammed S.S.

Department of Pure and Applied Chemistry Bayero University, Kano - NIGERIA Department of Applied Science College of Science and Technology Kaduna Polytechnic, Kaduna – NIGERIA

> Available online at: <u>www.isca.in</u> (Received 25th May 2011, revised 5th June 2011, accepted 14th June 2011)

Abstract

The levels of trace elements in food and agricultural samples have been shown to influence human and plant metabolism. The study of heavy metal speciation is of interest for the evaluation of their mobility, bioavailability and ecotoxicity. In this study, the zinc concentrations of the cereal and soil samples were determined using flame atomic absorption spectrometry (FAAS). The soil samples related to the cereal were digested and extracted using different digestion and extraction reagents. The results indicate that the soil samples collected from various locations, contain varying amounts of the metal, and it was distributed between Residual, Oxide, and Carbonate fractions. The results of the study also showed that the lowest value of total Zn concentration in soil was in sampling points KC1 (1.49 mg/kg) and the highest value was in the sampling points KK5 (207.2 mg/kg) and MD5 (207.2 mg/kg). It was found out that in all the sampling locations, the Zn concentration is within the tolerable range (10 – 300 mg/kg). The relationship between the cereal Zn and soil-extractable Zn concentrations was significant (P < 0.05).

Keyword: Speciation, zinc, soil, cereal, flame atomic absorption spectrometry.

Introduction

Zinc is essential for the function of more than 300 enzymes, phosphates, alcohol dehydrogenase, Superoxide dismutase, carboxypeptidase, δ – aminolevulinic acid dehydratase, carbonic anhydrase, and deoxyribonucleic acid polymerases¹. Severe zinc deficiency in animals has been associated with reduced fertility, fetal nervous system malformations and growth retardation in late pregnancy².

Zinc contamination in soils and vegetation is derived from several anthropogenic activities³. Soils are the receptacles for metals released from industrial activities, municipal waste sludge, urban composts, road traffics, atmospheric deposits and agrochemicals⁴.

Heavy metals are persistent in the environment and are non-biodegradable thus readily accumulate to toxic levels⁵. The heavy metal content alone does not

provide predictive insights on the bioavailability, mobility and fate of heavy metal contaminants ⁶. It is the chemical form or species of the heavy metal that is a factor in assessing their impacts on the environment because it is their chemical forms that control its bioavailability or mobility⁷.

The approach to soil speciation is to separate the soil into different chemical reagents or solvent fractions and analyse in each fraction the amount of element combined or associated with each fraction or phase⁸. Research on nutrient intake have shown that low dietary Zn poses a potential nutritional problem⁹. Therefore, the accurate Zn determination in food and soil is very important.

This study reports Zn concentrations in maize and soil samples by flame atomic absorption spectrometry (FAAS).

*Res.J.Chem.Sci.*_____ Vol. **1(4)**, 98-108, July (**2011**)

Material and Methods

The soil samples were dissolved by using the chemical reagents such as mixture of HNO_3/H_2O_2 , $(COOH)_2$, Na_2EDTA and CH_3COOH . The relation between the maize contents and the Zn contents of soil extracts was also investigated.

In the digestion and extraction procedures, concentrated HNO₃, H_2O_2 , 1.0M (COOH)₂, 0.05M Na₂EDTA and 1.0M CH₃COOH were used. Stock solution of Zn (1000mg/L) was prepared by dissolving Zn (NO₃)₂ in 1.0mol/L nitric acid.

Preparation of Samples: The study covered seven agricultural sites in Kaduna, Nigeria (fig. 1). The sites are: Nasarawa (NS), Sabon Tasha (ST), Unguwar Muazu (UM), Tudun Wada (TW), Kakuri (KK), Mando (MD) and Kabala West (KB). The samples were collected during the harvest season (Oct - Nov., 2008, 2009 and 2010). The soil samples were collected from different areas enumerated at a depth of 10cm below the surface¹⁰. The maize sample (maize) were collected at each of the locations. Kachia, a town situated about 130km away from Kaduna was taken as control. The sample was washed with water and was allowed to dry on filter papers. Both samples were dried at All the analyses were carried out in the 85°C. analytical laboratory of the department of Applied Science, College of Science and Technology, Kaduna Polytechnic, Kaduna-Nigeria.

Wet Ashing of Maize: 5g of oven dried crushed and sieved maize sample was weighed into an evaporating dish and ashed at 480°C for 4 hr. 10cm³ of a mixture of nitric acid – hydrogen peroxide (2+1) was added to the ashed sample and dried with occasional shaking on a hot plate and cooled, 4cm³ of 1.5 mol/dm³ nitric acid was then added and centrifuged. The digest was diluted to 60cm³ of water and filtered. This was analyzed for Zn using FAAS model 8010 Young Lin. A blank digest was carried out in the same way. **Digestion of Soil:** Soil pH was measured (1:5, w/v) using microprocessor pH meter model, pH 210. 10cm³ of mixture of nitric acid – hydrogen peroxide (2+1) was added to 5g of soil sample and dried with occasional shaking on a hot plate and cooled, 4cm³ of 1.5 mol/dm³ nitric acid was added and centrifuged and diluted to 60cm³ with water and was filtered. The clear digest was analyzed for Zn using FAAS model 8010 Young Lin. A blank digest was carried out in the same way.

Extraction of Soil: Soil extracts were obtained by shaking separately, 5g of soil samples with 10cm³ of 0.05Mol/dm³ Na₂EDTA (for carbonate and organically bound phases), 0.1Mol/dm³ oxalic acid (for oxide phases), and 1.0Mol/dm³ acetic acid (for carbonate phases). The mixture was evaporated with occasional shaking on a hot plate. 4cm³ of 1.5mol/dm³ nitric acid was added to the remainder and centrifuged. This is referred to as hot extraction. The digest was diluted to 60cm³ and analysed for Zn using FAAS model 8010 Young Lin. A blank digest was carried out in the same way.

Results and Discussion

Zn content in Samples: The Zn content for the samples collected from the eight different locations at Kaduna, Nigeria is shown in Tables 1 to 8. The results of the Zn concentrations from each location indicate higher concentrations of the metal in maize samples than the soil samples and in agreement with results from other investigators¹¹⁻¹².

The lower Zn concentration for some soil sites compared to others could be due to the lesser impact of anthropogenic sources¹¹. Similar findings were observed by other investigators¹³. The higher Zn values obtained for the maize samples could be attributed to the various agricultural practices¹⁴.

The pH of the soil samples from the various locations is acidic. Similar results were also reported by many authors¹⁴⁻¹⁶.

Metal Speciation: The distribution of Zn in soil samples from the various locations showed that the metal exist in three operationally defined geochemical fractions; the residual, oxide and carbonate (Table 1 - 8). The concentration of the metal bound to oxide is generally higher than the carbonate or residual, except in Nasarawa (NS), where the carbonate is higher compared to the other The predominance of the oxide two fractions. fraction in these areas is in agreement with the result as reported by other investigators^{11,17}. The dominance of the metal concentration in the carbonate fraction from NS is in agreement with the results of other investigators¹⁰.

In case of total Zn concentration in the soil, the lowest value was in point KC1 and the highest was in sampling points KK₅ and MD₅. In all the sampling locations, the Zn concentration is within the range (10-300 mg/kg) as reported¹⁸. The (COOH)₂ extractable, CH₃COOH extractable, EDTA extractable and HNO₃/H₂O extractable Zn have been considered as available Zn¹⁸. These Zn species should measure available concentration of Zn in the soils from the various locations¹⁹.

The results of correlation calculations (Table 9) show that the HNO_3/H_2O_2 , EDTA, $(COOH)_2$ and CH_3COOH_3 extractable and total Zn content in maize positively and significantly correlate with each other at 0.05 and 0.01 levels. Hence it could be deduced that the various reagents used were efficient for the extraction of this metal from the soil at these levels.

Conclusions

Different selective chemical reagents and the modified sequential extraction procedures used in this work were found useful in determining the mobility and chemical forms of Zn in soil. The results obtained show that the metal is distributed between Residual, Oxide and Carbonate fractions.

Acknowledgement

The authors acknowledge the assistance of Kaduna Polytechnic, Nigeria, Nasiru Musa, Kabiru Shehu, Yusuf Abdulrahman and Nuruddeen for their contributions during the collection of samples, analysis and the laboratory facilities provided.

References

- 1. Albasel N. and Cotteine A., Heavy metal contamination near major highways, industrial and urban areas in Belgium grassland *Water, air and soil pollution*, **24** (1), 103 110 (**1980**)
- 2. Lonnerdal B. Dietary factors influencing zinc absorption *J. Nutr* **130**, 13785 13835 (**2000**)
- 3. Ahmad A. B. and Bouhadjera Assessment of metals accumulated in Durum wheat (Triticum durum dest), pepper (Capsicum annum) and agricultural soils *African Journal of Agricultural Research*, **5** (20), 2795 2800 (2010)
- Khairah J., Zalifah M.K., Yin Y.H. and Aminah A., The uptake of heavy metals by fruit type vegetables grown in selected agricultural areas. *Pakistan Journal of Biological Science*, 7 (8), 1438 – 1442 (2004)
- Sharma R.K., Agrawal M. and Marshall F., Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India, *Ecotoxico. Environ. Safety*, 66, 258 – 266 (2007)
- 6. Albores A.F., Perez-cid B., Gomes E.F. and Lopez E.F., Comparison between sequential extraction procedures and single extraction procedures and for metal partitioning in sewage sludge samples *Analyst*, **125**, 1353 – 1357 (**2000**)
- Norvell W.A., Comparison of chelating agents for metals in diverse soil materials, *Soil Sci. Soc. Am. J.*, 48, 1285 – 1292 (1984)
- Uba, S., Uzairu A., Harrison G.F.S., Balarabe M.L. and Okunota O.J., Assessment of heavy metals bioavailability in dumpsites of Zaria metropolis, Nigeria, *African Journal of Biotechnology*, 7 (2), 122 – 130 (2008)

Vol. 1(4), 98-108, July (2011)

Res.J.Chem.Sci._

in soils from two polluted industrial sites: implications for remediation, Land contamination Reclamation, 8 (1), 13 - 23(2010)

9. Reddy, K.R., Danda S., Yukselen-Aksoy Y. and

- 10. Yaman, M., Okamus N., Bakirdere S. and Akdeniz I. Zinc speciation in soils and relation with its concentration in fruits, Asian Journal of *Chemistry*, **17** (1), 66 – 72 (2005)
- 11. Hickey, M.G. and Kittrick J.A., Chemical partitioning of cadmium, copper, nickel and zinc in soils and sediments containing high levels of heavy metals, J. Environ. Oual., 13, 372 - 376 (1984)
- 12. Ana-Irina, S., Vasile H., Vasile O., Josef J., and P... Studies transfer Elena on and Bioaccumulation of heavy metals from soil into Environmental and lettuce. Engineering Management Journal, 7 (5), 609 – 615 (2008)
- 13. Yusuf, K.A., Sequential extraction of lead, copper, cadmium and zinc in soils near Ojota waste site. Journal of Agronomy, 6 (2), 331-337 (2007)
- 14. Kashem, M.A. and Singh B.R., Heavy metal contamination of soil and vegetation in the vicinity of industries in Bangladesh, Water, Air and Soil Pollution. 115, 347 – 361 (1998)
- 15. Baranowski, R., Ryback A., and Baranowska I. Speciation Analysis of Elements in Soil Samples by XRF, Polish Journal of Environmental Studies, 11 (5), 473 – 482 (2002)
- 16. Chamon, A.S., Blum W.E.H., Gerzabek M.H., Ullah S.M., Rahman M. and Mondol M.N., Heavy metal uptake into crops on polluted soils of Bangladesh. Influence of soil amendment. J. Comm. Soil Sci. Plant Analysis, 36, 907 - 924 (2005)

- 17. Sposito, G., Lund L. and Chang J. Trace metal chemistry in arid zone field soils amended with sewage sludge 1. Fraction of Ni, Cu, Zn, Cd, and in solid phases. Soil Sci. Soc. Am. J. 46, 260–264 (1982)
- 18. Chamon, A.S., Mondol M.N., Faiz B., Rahman M.H. and Elahi S. F., Speciation Analysis of Nickel in the Soils of Tejgaon Industrial Area of Bangladesh. Bangladesh J. Sci. Ind. Res., 44 (1), 87 – 108 (**2009**)
- 19. Lindsay, W. and Norvell W. A., Zinc influx characteristics by intact corn seedlings. Soil Sci. Soc. Am. J. 42, 421 (1978)

Figure: (A) Map of Kaduna State showing

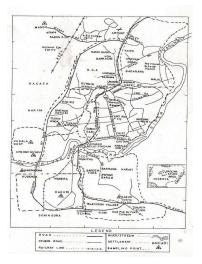


Figure: (B) Map of Kaduna Metropolis

	Metal conc in maize sample	Metal conc in soil sample	Hot Extraction			
Sample site Metals	Maize	HNO ₃ /H ₂ O ₂	EDTA	Oxalic Acid	Acetic Acid	рН
	Samples	(2+1)	0.05M	1.0M	1.0M	
KB_1	38.76±0.7	10.44±0.7	11.18±0.7	3.73±0.7	9.69±0.7	5.16
KB ₂	239.25±0.7	2.24±0.7	11.18±0.7	18.63±1.5	8.20±0.7	5.46
KB ₃	245.96±7.5	2.98±0.7	11.93±1.5	14.91±7.5	8.94±0.7	5.36
KB_4	39.50±0.7	11.18±1.5	11.93±0.7	4.47±0.7	10.43±0.7	5.26
KB ₅	240.00±0.7	2.98±0.7	11.93±0.7	19.38±1.5	8.94±0.7	5.66
KB ₆	240.75±1.5	3.73±0.7	12.67±0.7	19.63±0.9	9.69±0.7	6.12
KB ₇	240.00±0.7	3.73±0.7	11.93±0.7	20.12±1.5	8.94±0.7	6.12
KB ₈	240.00±0.7	3.73±0.7	12.67±0.7	19.38±0.7	8.94±0.7	6.12

Table-1: Results of Zn Concentrations of Maize and Soil Samples in Kabala WestThe results are mean values (mg/kg) ± standard deviation n = 3

Table-2: Results of Zn Concentrations of Maize and Soil Samples in NasarawaThe results are mean values (mg/kg) ± standard deviation n = 3

	Metal conc in maize sample	Metal conc in soil sample	Hot Extraction			
Sample site	Maize	HNO ₃ /H ₂ O ₂	EDTA	Oxalic Acid	Acetic Acid	рН
Metals	Samples	(2+1)	0.05M	1.0M	1.0M	-
NS_1	11.93±0.7	8.20±1.5	8.20±1.5	8.94±0.7	10.44±0.7	5.49
NS ₂	241.49±1.5	2.24±1.5	55.90±1.5	6.71±0.7	13.42±0.7	6.12
NS ₃	242.24±0.7	2.98±0.7	57.39±0.7	7.45±0.7	13.42±0.7	5.33
NS_4	13.42±0.7	8.94±0.7	8.94±1.5	9.69±0.7	11.18±1.5	5.92
NS ₅	242.24±0.7	2.98±0.7	56.65±0.7	7.45±0.7	14.16±0.7	6.12
NS ₆	242.98±0.7	3.73±0.7	57.39±1.5	8.20±0.7	14.91±1.5	6.45
NS ₇	242.98±1.5	2.98±0.7	12.67±1.5	7.45±0.7	14.91±0.7	6.45
NS ₈	242.98±0.7	4.47±0.7	58.88±0.7	7.45±0.7	14.16±1.5	6.45

	Metal conc in maize sample	Metal conc in soil sample	Hot Extraction			
Sample site	Maize	HNO ₃ /H ₂ O ₂	EDTA	Oxalic Acid	Acetic Acid	рН
Metals	Samples	(2+1)	0.05M	1.0M	1.0M	-
MD1	11.93±0.7	11.93±0.7	13.42±0.7	11.93±0.7	12.67±0.7	4.15
MD2	206.46±1.5	20.87±0.7	33.54±1.5	51.43±0.7	35.03±1.5	4.45
MD3	205.71±0.7	21.61±0.7	34.29±1.5	52.17±7.5	35.03±1.5	4.56
MD4	13.42±1.5	12.67±1.5	14.91±7.5	13.42±1.5	14.16±1.5	4.35
MD5	207.20±0.7	207.20±0.7	34.29±0.7	51.43±1.5	35.78±0.7	4.26
MD6	207.95±1.5	22.36±0.7	35.03±1.5	52.92±0.7	36.52±0.7	4.75
MD7	207.20±0.7	22.36±1.5	34.53±0.9	52.17±0.7	36.52±1.5	4.75
MD8	210.43±5.0	22.36±0.7	34.29±0.7	51.43±1.5	35.78±0.7	4.75

Table-3: Results of Zn Concentrations of Maize and Soil Samples in MandoThe results are mean values (mg/kg) ± standard deviation n = 3

Table-4: Results of Zn Concentrations of Maize and Soil Samples in Kakuri

	Metal conc in maize sample	Metal conc in soil sample	Hot Extraction			
Sample site Metals	Maize	HNO ₃ /H ₂ O ₂	EDTA	Oxalic Acid	Acetic Acid	рН
	Samples	(2+1)	0.05M	1.0M	1.0M	
KK1	10.44 ± 0.7	11.18±0.7	11.18±0.7	11.93±0.7	13.42±0.7	5.08
KK2	257.14±1.5	27.58±1.5	30.56±0.7	41.74±1.5	23.85±1.5	4.98
KK3	258.63±1.5	28.32±0.7	31.30±0.7	42.24±1.6	25.09±1.6	5.14
KK4	13.42±1.5	12.67±1.5	14.9±17.5	13.42±1.5	14.16±1.5	5.14
KK5	207.20±0.7	207.20±0.7	34.29±0.7	51.43±1.5	35.78±0.7	5.18
KK6	207.95±1.5	22.36±0.7	35.03±1.5	52.92±0.7	36.52±0.7	5.58
KK7	207.20±0.7	22.36±1.5	34.53±0.9	52.17±0.7	36.52±1.5	5.08
KK8	258.63±0.7	28.32±0.7	32.05±0.7	42.48±1.5	25.34±0.7	4.98

	Metal conc in maize sample	Metal conc in soil sample	Hot Extraction			
Sample site	Maize	HNO ₃ /H ₂ O ₂	EDTA	Oxalic Acid	Acetic Acid	pН
Metals	Samples	(2+1)	0.05M	1.0M	1.0M	-
TW1	10.44±0.7	11.18±0.7	11.18±0.7	11.93±0.7	13.42±0.7	5.07
TW2	174.41±1.5	48.45±1.5	41.74±1.5	43.23±1.5	34.29±1.5	5.12
TW3	181.86±0.7	49.19±0.7	41.74±0.7	43.98±1.5	35.03±0.7	5.25
TW 4	15.65±0.7	13.42±0.7	15.65±0.7	14.91±7.5	12.67±1.5	5.27
TW 5	175.16±0.7	175.16±0.7	42.48±1.5	43.98±1.5	35.03±1.5	5.17
TW 6	175.90±0.7	49.94±0.7	43.23±0.7	44.72±1.5	35.78±0.7	5.49
TW 7	175.90±0.7	49.19±0.7	43.23±1.5	43.98±0.7	35.78±0.7	5.49
TW 8	174.41±0.7	47.70±0.7	40.99±0.7	43.73±1.6	34.29±0.7	5.49

Table-5: Results of Zn Concentrations of Maize and Soil Samples in Tudun WadaThe results are mean values (mg/kg) ± standard deviation n = 3

Table-6: Results of Zn Concentrations of Maize and Soil Samples in Sabon TashaThe results are mean values (mg/kg) ± standard deviation n = 3

	Metal conc in maize sample	Metal conc in soil sample	Hot Extraction			
Sample site	Maize	HNO ₃ /H ₂ O ₂	EDTA	Oxalic Acid	Acetic Acid	рН
Metals	Samples	(2+1)	0.05M	1.0M	1.0M	_
ST1	20.87±0.7	16.40±0.7	14.16±0.7	16.40±0.7	16.40±0.7	5.14
ST2	234.78±1.5	24.60±0.7	35.03±1.5	32.05±0.7	29.07±1.5	5.2
ST3	235.53±1.5	25.34±0.7	35.78±0.7	32.80±1.5	29.81±0.7	5.24
ST4	22.36±7.5	20.62±1.6	25.34±0.7	20.12±1.5	20.87±1.5	5.82
ST5	235.53±0.7	25.34±0.7	35.78±0.7	32.80±1.5	29.81±1.5	5.25
ST6	236.27±0.7	26.09±0.7	36.52±1.5	33.54±0.7	30.56±0.7	6.1
ST7	236.27±1.5	25.34±1.5	36.52±0.7	32.80±0.7	29.81±1.5	6.1
ST8	235.53±0.7	25.34±0.7	35.78±0.7	32.80±1.5	29.81±0.7	6.1

	Metal conc in maize sample	Metal conc in soil sample	Hot Extraction			
Sample site	Maize	HNO ₃ /H ₂ O ₂	EDTA	Oxalic Acid	Acetic Acid	рН
Metals	Samples	(2+1)	0.05M	1.0M	1.0M	_
UM1	176.65±1.5	163.98±7.5	11.18±1.5	18.63±1.5	17.14±1.5	4.10
UM2	177.39±0.7	17.14±0.7	11.18±1.5	19.38±0.7	17.89±1.5	4.22
UM3	23.11±0.7	20.87±1.5	26.09±0.7	20.87±0.7	21.59±1.5	4.74
UM4	177.39±0.7	17.14±0.7	11.93±0.7	19.38±0.7	17.89±0.7	4.11
UM5	178.14±1.5	17.89±0.7	12.67±0.7	20.12±1.5	18.63±0.7	4.54
UM6	178.14±0.7	17.14±0.7	12.67±1.2	19.38±0.7	18.63±2.1	4.54
UM7	177.39±0.7	17.89±0.7	12.67±0.7	19.38±1.5	17.89±0.7	4.54
UM8	172.65±1.5	161.98±7.5	11.18±1.5	18.63±1.5	17.14±1.5	4.54

Table 7: Results of Zn Concentrations of Maize and Soil Samples in Unguwan Muazu

Table 8: Results of Zn Concentrations of Maize and Soil Samples in Kachia

The results are mean value	s (mg/kg) ± standard deviation n = 3
The results are mean vara	

	Metal conc in maize sample	Metal conc in soil sample	Hot Extraction			
Sample site	Maize	HNO ₃ /H ₂ O ₂	EDTA	Oxalic Acid	Acetic Acid	рН
Metals	Samples	(2+1)	0.05M	1.0M	1.0M	-
KC 1	164.72±0.75	1.49±0.75	7.45±0.75	14.91±1.49	36.52±1.49	6.16
KC 2	166.96±0.7	2.24±1.5	4.22±1.1	4.47±0.7	6.71±0.7	6.24
KC 3	161.74±0.7	10.43±0.7	17.14±0.7	24.60±0.7	17.14±1.5	6.15
KC 4	161.74±0.7	10.43±0.7	17.14±0.7	24.60±0.7	17.14±1.5	6.08
KC 5	158.01±0.7	36.52±0.7	24.60±0.7	25.34±0.7	17.14±0.7	6.07
KC 6	163.23±0.7	20.87±0.7	27.58±0.7	24.60±0.7	21.61±0.7	6.14
KC 7	158.01±0.7	13.42±0.7	7.45±0.7	14.16±0.7	14.16±1.5	6.01

			(A)		Ĩ	
Components	Maize Sample	HNO ₃ /H ₂ O ₂	EDTA	Oxalic Acid	Acetic Acid	рН
Maize Sample	1	963**	.777*	886**	.935**	.478
HNO ₃ /H ₂ O ₂		1	716*	.936**	854**	350
EDTA			1	683	.614	.202
Oxalic Acid				1	706	284
Acetic Acid					1	.686
PH						1

*Correlation is significant at the 0.05 level (2-tailed).

**Correlation is significant at the 0.01 level (2-tailed).

			(B)			
Components	Maize Sample	HNO ₃ /H ₂ O ₂	EDTA	Oxalic Acid	Acetic Acid	рН
Maize Sample	1	.273	.998**	.999**	.999**	.672
HNO ₃ /H ₂ O ₂		1	.280	.271	.281	357
EDTA			1	.999**	.999**	.680
Oxalic Acid				1	.999**	.671
Acetic Acid					1	.683
PH						1

**Correlation is significant at the 0.01 level (2-tailed).

(C)

	1		(U)			
Components	Maize Sample	HNO ₃ /H ₂ O ₂	EDTA	Oxalic Acid	Acetic Acid	рН
Maize Sample	1	.213	.920**	.873**	.675**	.071
HNO ₃ /H ₂ O ₂		1	.354	.389	.456	.768*
EDTA			1	.989**	.903**	.344
Oxalic Acid				1	.949**	.413
Acetic Acid					1	.576
PH						1

**Correlation is significant at the 0.01 level (2-tailed).

Research Journal of Chemical Sciences______ ISSN 2231-606X

			(D)			
Components	Maize Sample	HNO ₃ /H ₂ O ₂	EDTA	Oxalic Acid	Acetic Acid	рН
Maize Sample	1	.517	.995**	.999**	.998**	.439
HNO ₃ /H ₂ O ₂		1	.527	.523	.522	100
EDTA			1	.998**	.994**	.476
Oxalic Acid				1	.996**	.467
Acetic Acid					1	.453
PH						1

**Correlation is significant at the 0.01 level (2-tailed).

			(E)			
Components	Maize Sample	HNO ₃ /H ₂ O ₂	EDTA	Oxalic Acid	Acetic Acid	рН
Maize Sample	1	.937**	.929**	.988**	.973**	.196
HNO ₃ /H ₂ O ₂		1	.996**	.979**	.992**	.357
EDTA			1	.972**	.987**	.365
Oxalic Acid				1	.997**	.278
Acetic Acid					1	.315
PH						1

**Correlation is significant at the 0.01 level (2-tailed).

			(F)			
Component s	Maize Sample	HNO ₃ /H ₂ O ₂	EDTA	Oxalic Acid	Acetic Acid	рН
Maize Sample	1	.176	987**	559	909**	552
HNO ₃ /H ₂ O ₂		1	290	697	509	242
EDTA			1	.642	.954**	.610
Oxalic Acid				1	.785*	.452
Acetic Acid					1	.641
PH						1

*Correlation is significant at the 0.05 level (2-tailed).

**Correlation is significant at the 0.01 level (2-tailed).

Research Journal of Chemical Sciences ISSN 2231-606X

			(G)			
Components	Maize Sample	HNO ₃ /H ₂ O ₂	EDTA	Oxalic Acid	Acetic Acid	рН
Maize Sample	1	.372	.991**	.981**	.260	627
HNO ₃ /H ₂ O ₂		1	.403	.342	.959**	195
EDTA			1	.986**	.303	646
Oxalic Acid				1	.251	571
Acetic Acid					1	260
PH						1

**Correlation is significant at the 0.01 level (2-tailed).

(H)							
Components	Maize Sample	HNO ₃ /H ₂ O ₂	EDTA	Oxalic Acid	Acetic Acid	рН	
Maize Sample	1	708	379	536	.098	.923**	
HNO ₃ /H ₂ O ₂		1	.784*	.630	127	464	
EDTA			1	.873*	.089	154	
Oxalic Acid				1	.256	397	
Acetic Acid					1	.004	
PH						1	

*Correlation is significant at the 0.05 level (2-tailed).

**Correlation is significant at the 0.01 level (2-tailed).